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ABSTRACT

Let S be a closed and bounded set in a uniformly convex Banach space X.
1t is shown that the set of all points in X which have a farthest point in S is
dense. Let b(S) denote the set of all farthest points of S, then a sufficient
condition for co S = €o b(S) to hold is that X have the following property

(I): Every closed and bounded convex set is the intersection of a family of
closed balls,

1. Let S be a subset of a normed linear space and let b(S) denote the set of all
s€ S for which an element c exists such that

* “s—-c”=sup{||x—c[||xeS}

i.e. the set of all farthest points in S. In [3] we proved that if S is a closed and
bounded set in Hilbert space then b(S) # . Asplund [1] proved independently
that in the case of a convex closed and bounded S in a Hilbert space H, S is identical
with the closed convex hull, ©o b(S), of the set of farthest points; in addition he
showed [2]* that the set C of all points in H satisfying (*) for some s€ S is dense
(in H). In the present note we show that the last result is true for any closed and
bounded set in a uniformly convex Banach space X. If, in addition X has a
certain smoothness property (I) (cf. section 3), known to hold for all reflexive
spaces having a strongly differentiable norm, then ¢o S = ¢o b(S).

2. In a normed linear space X let V= {x| | x| < 1}. For any real ¢, 0 <e <2,
define the function d(g), called the modulus of convexity of X, by setting

oY) 6(e)=inf‘1——li—||x+y[||x,er,||x—y]|gs}

The space X is called uniformly convex if §(¢) > O for all ¢ in the domain of
definition of . Clearly

)] 62 ¢ = d(e) 2 d(e)

Also, as is readily verified,

Received June 13, 1966.
* | am indebted to Dr. Micha Perles for these references.

171



172 M. EDELSTEIN [September
3 56 S -

LemMMa 1. Let x,yeV, x#y, and suppose 0 < ji <3, then

@ 1= o+ =y ] 2 205 x = y ]

Proof. Let z = ux + (1 — p)y. It clearly suffices to show that all we X with
“ w—z ” < 2u5(|] X—y “) are in V. Set v=1 u(w — (1 —2w)y). Then w=2uv
+ (1 — 2p)y is a convex combination of v and y and it suffices to show that v is
within distance 5(| x — yl|) from 4(x + y).
Now

llv—%(x+y)ll 51; [w— (1 =20y~ u(x+ »)|

1
= o [w=n == ny]

1
= L Iw=z sy

LemMa 2. LetO<a<1,0<pB <% and suppose x,ye X and fe X* satisfy
the following conditions

) [xl=t=]yl=rm=]|s]
(6) fX)S1—a

U |x—Byl<1-8

Then

® | x| <1 -2p5(x)

Proof. Let u=(1/(1 — B)(x — By); then " u ” =<1 and x=8y+ ({1 — Pu.
It follows from Lemma 1 that 1 — | x| = 285(|u — y ) = 285(]| x — y [)). Now

ly=x|z|f] ly=*| 2f0=0=f)~fx)za Thus |x|=1-285(a)
as asserted.

THEOREM 1. Let S be a nonempty closed and bounded set in a uniformly
convex Banach space X. Then the set C, of all points c in X for which there is a
point seS with |s—c| =sup{|x—c||xeS}, is dense (in X).

Proof. Given coe X let
CH) r1=sup{"x—c0" IxeS}

We may clearly assume that r;, > 0. To prove the theorem it suffices to show that
for an arbitrary p, 0 < p <ry, there is a ce X, as required, with ¢ — ¢, | < p.
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To this end we define inductively sequences {c,} and {x,}, n = 1,2, -+, converging
to ¢ and s respectively. Let, then, x, € S be chosen so that

(10,) s = co| 2 74 (1 - 52(1))
Next, let

Co—Xy P

11 ¢ =¢+ —--—
( 1) 1 0 "co—xln 2

Assuming r,_,, x,_, and ¢,_, already defined set
) r,,=sup{”x—c,,_1" xeS}

and choose x,€ S so that
(10, = comi 2 (1= 50 80 ).

Finally, let

_ G =% P
(11,) Cp=Cpeq + ” - -—x: u 0 -

Of the sequences {r,}, {x,} and {c,} thus defined the last one is clearly a Cauchy
sequence by (11,). We proceed to show that so is {x,}. For each positive integer n
let then R, >0, 1> f,>0 and f,e X* be defined as follows.

(12,) R,=r,+27"p

—"n L — Xn = Ch-1 _
(13n) ﬁn 2 Rn s Up ” X, Cn1 ”
and
(14,) fw) =|f] =1

From (9,.,), (11,), (10,) and (12,) we get
(15, rart ZR, = & 8"

It follows from (9,), (11,) and (12,) that both x, and x,,, satisfy the inequality

lz—c,,

<1

(16,)

Further,
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fn(xn - C,,) = fn(xn e cn—l) +fn(cn—1 e Cn) = " Xp ™ Cp—1 " + 2_"P

> r -2 ) +2p=R,[1 - =2 5"*1(1)
. ; (- )

A

R,(1—-0"(1)
To complete the proof that {x,} is a Cauchy sequence it suffices now to show that
(18,) Jo%n+1 =€) > R(1 = 5'(1))
Indeed (16,), (17,) and (18,) are easily seen to imply
[ %ae1 =% | SRS TSy + PF D) S 270y + p) ()

To establish (18,) we make use of Lemma 2.
We note, then, that

Xni1 — Cp ﬂ
ML S LA u <
nYn

R,
[For [ %041 — Cay | STa=R,—27"p=R,(1 - B,)

[

and

Xp+1 —Ca—1 _ Xpg41— €y n—Cu-1 _ Xnt1 —Cn
R, R TR, T

and using (10,,,) and (15,)

" Xn+1 — Cp " g Frtt 1- n+1 6’!4'2(1)
2

R ____ 5n+1(1) 6n+2(1)

v

2"+l

\

R, = 57 811 = R(1L = 28,8" (1)

(*) For

"xn+1 Cn Xp = Cy
FLE S

1 Xn+1 — Cn Xp — Cp
>
2 4 (B + 21
> 1-8"(1)

and, it clearly follows from (1), that " Xp41— Xp " <R,$ ~'(D).
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Thus (setting « = 6"** (1)) we obtain

fn(xn+1 - cn) > Rn(l - 6"(1))
as asserted.

Let now s =lim,_, ,x, and suppose ¢ =1lim,_,, c,.
We clearly have

sup{|c — x| |xe S} = lim(sup{]c,— x| |xeS})
n~»
lim r,yy = lim |e,— x4y =] c—5s]
n—>a n—+ao
concluding the proof of the theorem.

ReMARKS. In[5] Lindenstrauss defined the notion of a strongly exposed point
as follows: A point seS is said to be a strongly exposed point of
S if there is an fe X* such that f(y) < f(s) for y #s and whenever {x,} =S is
such that f(x,) —f(s) then || x, — s| ~ 0. Since every point on the boundaty of
the unit ball of a uniformly convex Banach space is known to be strongly exposed
it follows from the above theorem that every closed and bounded set in a
uniformly convex Banach space has strongly exposed points.

3. DerFINITION. A normed linear space X is said to have property (I) if every
closed and bounded convex set in X can be represented as the intersection of a
family of closed balls. This property was introduced by Mazur [6] and shown to
hold for all reflexive Banach spaces having a strongly differentiable norm (cf.
also Phelps [7, p. 976]).

THEOREM 2. Let X and S be as in Theorem 1 and suppose, in addition, that
X has property (I). Then
€o S = co b(S).

Proof. Clearly ¢o b(S) ccoS. To prove the reverse inclusion suppose
x ¢ Cob(s). Then, by property (I) there is a closed ball

Blco,r) = {y| |y = co] =7},

where coeX and r>0, such that cob(S) < B(c,,7) and " X—¢ || —-r>0.
By Theorem 1 there is a ce X such that ||c—co| < ||x~ ¢, || — r with ceC.
If seS is farthest from ¢ then |s—c|/<|s—co|+[co—ec] < |x —co]
showing that S < B(cy,r). Thus x ¢ c0.S and Co S < €0 b(S) completing the proof.
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