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ABSTRACT 

Let S be a closed and bounded set in a uniformly convex Banach space X. 
It is shown that the set of all points in X which have a farthest point in S is 
dense. Let b(S) denote the set of all farthest points of S, then a sufficient 
condition for ~6 S = ~6 b(S) to hold is that X have the following property 
(I): Every closed and bounded convex set is the intersection of a family of 
closed balls. 

1. Let S be a subset of  a normed linear space and let b(S) denote the set of  all 

s e S for which an element c exists such that 

(*) Ils-cll =sup{llx-clllx s) 
i.e. the set of  all farthest points in S. In [3] we proved that if S is a closed and 

bounded set in Hilbert space then b(S) # ;?J. Asplund [1] proved independently 
that  in the case of  a convex closed and bounded S in a Hilbert space H, S is identical 
with the closed convex hull, ~-6 b(S), of the set of  farthest points;  in addition he 
showed [2]* that the set C of  all points in H satisfying (*) for some s ~ S is dense 
(in H). In the present note we show that the last result is true for any closed and 

bounded set in a uniformly convex Banach space X. If, in addition X has a 
certain smoothness property (I) (of. section 3), known to hold for all reflexive 
spaces having a strongly differentiable norm, then 6-6 S = U6 b(S). 

2. In a normed linear space X let V =  {x ]]] x ]J < 1}. For  any real e, 0 < e  < 2, 
define the function 6(e), called the modulus of  convexity of  X, by setting 

(1) 6 ( e ) = i n f  1 - ~ -  I l x + y l l  I x , y e V , I l x - y l l  >--. 

The space X is called uniformly convex if 6(e) > 0 for all e in the domain of  

definition of  6. Clearly 

(2) e >_- e' :~ 6(e) >= 6(s') 

Also, as is readily verified, 
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(3) 6 ( e ) <  T 

LEMMA X. Let x, y e  V, x # y, and suppose 0 < # < ½ ;  then 

(4) X - I ]  #x + (X - #)y It > 2#6(11 x - y [I) 

Proof .  Let  z = #x + (1 - #)y. It  clearly suffices to  show that  all w ~ X with 

II w - z II --< 2#6(11 x - y I1~ are in V. Set v = ½ #(w - (1 - 2#)y). Then  w = 2#v 
+ (1 - 2#)y is a convex combinat ion o f  v and y and it suffices to show that  v is 

within distance 6(I [ x -  y I[) f rom ½(x + y). 
N o w  

X 1 
IIv - -~  (x + y)ll = 2---#- 

X 
2# 

1 
2# 

LEM_V~ 2. L e t 0 < ~ < X ,  0 < f l < ½  
the following conditions 

(5) 

(6) 

(7) 

Then 

(8) 

[ l w - ( 1  - 2 # ) y -  #(x + y)[t 

II w - # x  - (x - #)y II 

II w - z II --< 6(11 x - y II)- 

and suppose x, y E X and f E X* satisfy 

Ilxll---- x =  Ilyll = f ( y ) =  VII 
f (x)  < 1 - ot 

11 x - ay  II --< x - 

II x II --< 1 - 2,6'6(c0 

Proof .  Let  u = ( 1 / ( 1 - f l ) ) ( x - f l y ) ; t h e n  ]u ~ 1  and x = f l y + ( 1 - f l ) u .  
I t  follows f rom Lemma 1 that  1 - [I x [ > 2fl6( u - y ][) > 2fl6(11 x - y [1). Now 

[ l Y -  ~11---llfll I l y -  xlI _-__s<y- x>=f~y~-s<x)>~. Thus x ~ t - 2 , 6 < ~ )  
as asserted. 

THEOREM 1. Let S be a nonempty closed and bounded set in a uniformly 

convex Banach space X. Then the set C, of all points c in X for which there is a 

point s e S  with I I s - c l l = s u p { l t x - c l l l x ~ s } ,  is dense (in X). 

Proof.  Given Co ~ X let 

(91) r 1 = sup ~ll x - eo 11 Ix ~ s l  

We may  dea r ly  assume that  r l  > 0. To  prove the theorem it suffices to show that  

for  an arbi t rary p, 0 < p < r 1, there is a c e X,  as required, with II c - co II z p. 
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To this end we define inductively sequences {c,} and {x,}, n = 1, 2,. . . ,  converging 
to c and s respectively. Let, then, xl e S be chosen so that 

HXl-Col l>=r l  1-2-~-rl (101) 

Next, let 

(111) Cl = C O +  
Co - xl P 

IlCo-Xxl[ 2 

Assuming r . -a ,  x . -1  and c.-1 already defined set 

(9.) r. = sup {ll x - c ._ ,  I1 x e S} 

and choose x. e S so that 

(lO.) 

Finally, let 

p 6.+1(1) ) IIx.-c.- ,II =>r. 1 -  ~7~. 

(11.) 
Cn-  1 - -  Xn p 

c. = c . - ,  + It c . - i - x . U  2 "  

Of the sequences {r.}, {x.} and {c.} thus defined the last one is clearly a Cauchy 
sequence by (11.). We proceed to show that so is {x.}. For each positive integer n 
let then R. > 0, ½ >/~. > 0 and f .  E X* be defined as follows. 

(12.) R. = r. + 2 - " p  

(13.) ft. = 2-"  p x. - c.-1 
R-7 ". = rFx.-c._l~ 

and 

(14.) f . (u . )  = Il f . 11 = 1 

From (9.+0,  (11.), (10.) and (12.) we get 

(15.) r.+ a > R .  - p t5"+1(1) 

It follows from (9.), (11.) and (12.) that both x. and x.+l  satisfy the inequality 

(16.) I ?ll = < 1  

Further, 
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f . ( x .  - c . )  = f . ( x .  - ~ . _ 1 )  + f . ( c . - ,  - c . )  = l l x . -  c._, [[ + 2-"p 

(17.) 
=> r.  - -~. 5"+t(1) + 2 -"p= R.(1 2"R.P 6"+1(1)) 

> R.(1 - 6"(1)) 

To complete the proof that {x.} is a Cauchy sequence it suffices now to show that 

(18.) f.(x.+ 1 - c.) > R.(1 - 6"(1)) 

Indeed (16.), (17.) and (18.) are easily seen to imply 

II x.÷~ - x.  II ~ R.'~"-*(1) ~ (r, + v )V- ' (1 )  ~ 2-"+'( ,  " , + p)(*) 

To establish (18.) we make use of Lemma 2. 
We note, then, that 

and 

x . + , - c .  I[ 
R. p.u. <=l-p.  

For [I x.+ , - c._, [I < r. = R. -- 2 - " p =  R.(1--  fl.) 

Xn+ 1 - -  Cn_ 1 Xn+ l - -  C n C n - -  Cn_ 1 Xn+ l - -  C n ] 

R. - a .  + a----7--- - a .  p.u.. 

and using (10.+1) and (15.) 

( [1~ .÷ , -c . I I  a ~.÷, 1 P 6.+2(1)) 
2.+ 1/'n+ 1 

P R. - p 6"+1(1)- ~ 6"+2(1) 

> R. 2 P l  6"+1(1) = R . ( 1 -  2fl.6"+1(1)) 

(*) For 
1 X n + I  - -  Cn x .  - c .  > 1 . ( .x .+  l _ -  c .  Xn - -  Cn 

> 1 -  6"(1) 

and, it clearly follows from (1), that [[ x , + t  -- Xn[[ < R,5 -1 (1). 
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Thus (setting e~ = 6 n+l (1)) we obtain 

f .(x.+ 1 - c.) > Rn(1 - 6~(1)) 

as asserted. 

Let now s = lim..oox, and suppose c = lim._.oo c.. 
We clearly have 

sup {lie - x II I x ~ s} -- lira (sup {11 e , -  x II Ix ~ S}) 
n--~ O0 

lira r~+l = lim [Jc . -x~+l l ]=l [  c - s l l  
M-~O0 N --~ O0 

concluding the proof of the theorem. 

REMARKS. In [5] Lindenstrauss defined the notion of a strongly exposed point 
as follows: A point s e S  is said to be a strongly exposed point of 
S if there is a n f e X *  such that f ( y )  <f ( s )  for y 4 s and whenever {xn} c S is 
such that f(xn) ~ f ( s ) t h e n  IIx,- sll-.0 Since every point on the boundary of 
the unit ball of a uniformly convex Banach space is known to be strongly exposed 
it follows from the above theorem that every closed and bounded set in a 
uniformly convex Banach space has strongly exposed points. 

3. DEFINITION. A normed linear space X is said to have property (I) if every 
closed and bounded convex set in X can be represented as the intersection of a 
family of closed balls. This property was introduced by Mazur I'6] and shown to 
hold for all reflexive Banach spaces having a strongly differentiable norm (cf. 
also Phelps 1'7, p. 976]). 

THEOREM 2. Let X and S be as in Theorem 1 and suppose, in addition, that 
X has property (I). Then 

S = 66 b(S). 

Proof. Clearly ~-6b(S)c~-6S. To prove the reverse inclusion suppose 
x (~ c-6b(s). Then, by property (I) there is a closed ball 

B(co, r) = {yl II y - c o i l  ~ r}, 

where c o e x  and r > 0 ,  such that ~-6b(S) cB(co,  r) and x - c  o I l - r > 0 .  
By Theorem 1 there i s a  c e X  such that [ c - c o  < X - C o  - r  with cEC.  
I f  s e S  is farthest from c then I I s - c l l  < s - c  o l + Co "c  < [[x - c  o 
showing that S c B(co, r). Thus x ¢ c-6S and ~-6S c ~"6b(S) completing the proof. 
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